INTEGRATION BY DIFFERENTIATION

ISSN: 2319-1023

H. Torres-Silva¹, J. López-Bonilla² & Laurian Ioan Pişcoran³

¹Escuela de Ingeniería Eléctrica y Electrónica, Univ. de Tarapacá, Arica, Casilla 6-D, Chile Email: htorres@uta.cl

²ESIME-Zacatenco, IPN, Col. Lindavista, CP 07738, CDMX, México Email: jlopezb@ipn.mx

³Technical University of Cluj Napoca North University Center of Baia Mare, Department of Mathematics and Computer Science Victoriei 76, 430122 Baia Mare, Romania Email: plaurian@yahoo.com

Dedicated to Prof. M.A. Pathan on his 75th birth anniversary

Abstract: We employ an expression for the Laplace transform, based in integration by differentiation, to deduce the Post-Widders formula for the inversion of this transform. Besides, we apply the Kempf et al process to deduce the Lanczos generalized derivative.

Keywords and Phrases: Inversion of the Laplace transform, Post-Widders formula, Orthogonal derivative, Integration by differentiation, Lanczos derivative.

Mathematics Subject Classification: 44A10.

1. Introduction

If we know the Laplace transform [1]:

$$F(s) = \int_0^\infty e^{-st} f(t)dt,\tag{1}$$

the aim is to determine f(t); in [2] was obtained the following formula to do the integration in (1) via differentiation:

$$F(s) = f\left(-\frac{d}{ds}\right)\frac{1}{s} \tag{2}$$